Problem 1 (p. 172, #1). Which of the following sets are connected? Which are compact?

(a) \{ (x_1, x_2) \in \mathbb{R}^2 \mid |x_1| \leq 1 \}
(b) \{ x \in \mathbb{R}^n \mid \|x\| \leq 10 \}
(c) \{ x \in \mathbb{R}^n \mid 1 \leq \|x\| \leq 2 \}
(d) \mathbb{Z} = \{ \text{integers in } \mathbb{R} \}
(e) a \text{ finite set in } \mathbb{R}
(f) \{ x \in \mathbb{R}^n \mid \|x\| = 1 \} \text{ (Be careful with the case } n = 1! \)
(g) Boundary of the unit square in \mathbb{R}^2
(h) The boundary of a bounded set in \mathbb{R}
(i) The rationals in [0, 1]
(j) A closed set in [0, 1]

Solution.
(a) Connected, noncompact.
(b) Connected, compact.
(c) Compact. Connected if \(n \geq 2 \), not connected if \(n = 1 \).
(d) Not connected, not compact.
(e) Connected if just one point, otherwise not connected. Is compact.
(f) Compact. Connected if \(n \geq 2 \), not connected if \(n = 1 \), where the set is \{±1\} \subset \mathbb{R}.
(g) Connected, compact.
(h) Always compact (the boundary of a set \(A \) is always closed, being the intersection of closed sets \(\text{cl}(A) \) and \(\text{cl}(\mathbb{R} \setminus A) \), and is bounded if the set is bounded). May or may not be connected: for example \(\text{bd}([0, 1]) = \{0, 1\} \) is not connected, while \(\text{bd}(\{0\}) = \{0\} \) is connected.
(i) Neither connected nor compact.
(j) Compact; may or may not be connected.

\[\square \]

Problem 2 (p. 191, #4). Let \(f : A \subset \mathbb{R}^n \rightarrow \mathbb{R} \) be continuous, \(x, y \in A \) and \(c : [0, 1] \rightarrow A \subset \mathbb{R}^n \) be a continuous curve joining \(x \) and \(y \). Show that along this curve, \(f \) attains its maximum and minimum values (among all values along the curve).

Solution. Since composition of continuous functions is continuous, \(f \circ c : [0, 1] \rightarrow \mathbb{R} \) is continuous. The domain \([0, 1]\) is compact, so \(f \circ c \) attains its maximum and minimum values (owing to compactness of \(f \circ c([0, 1]) \)). This is the same as the statement to be shown.

Problem 3 (p. 193, #3). Let \(f : [0, 1] \rightarrow [0, 1] \) be continuous. Prove that \(f \) has a fixed point (i.e. a point \(x \in [0, 1] \) such that \(f(x) = x \)).

Solution. Since \(f \) is continuous, \(g(x) = f(x) - x \) is continuous. A fixed point is the same thing as a point \(x_0 \in [0, 1] \) where \(g(x_0) = 0 \).

Suppose there are no fixed points. Since \(g([0, 1]) \) is connected, it must be that either \(g(x) > 0 \) for all \(x \in [0, 1] \) or \(g(x) < 0 \) for all \(x \in [0, 1] \). If \(g(x) > 0 \), then \(f(x) > x \) for all \(x \in [0, 1] \), but then \(f(1) > 1 \) which contradicts the assumption on the range of \(f \): that \(f : [0, 1] \rightarrow [0, 1] \). On the other hand, if \(g(x) < 0 \), then \(f(x) < x \) for all \(x \in [0, 1] \), but then \(f(0) < 0 \) which also contradicts the assumption on the range. Thus there must be some \(x \) such that \(g(x) = 0 \), or equivalently \(f(x) = x \).
Alternatively, we can note that \(g(0) = f(0) \in [0,1] \) and \(g(1) = f(1) - 1 \in [-1,0] \), and by the intermediate value theorem, for any \(c \in [g(1), g(0)] \), there exists \(x_0 \) such that \(g(x_0) = c \). In particular, \(c = 0 \) always lies in \([g(1), g(0)]\), so there exists a fixed point.

Problem 4 (p. 174, #21).

(a) Prove that a set \(A \subset (M, d) \) is connected if and only if \(\emptyset \) and \(A \) are the only subsets of \(A \) that are open and closed relative to \(A \). (A set \(U \subset A \) is called open relative to \(A \) if \(U = V \cap A \) for some open set \(V \subset M \); ‘closed relative to \(A \)’ is defined similarly.)

(b) Prove that \(\emptyset \) and \(\mathbb{R}^n \) are the only subsets of \(\mathbb{R}^n \) that are both open and closed.

Proof.

(a) \(A \) is not connected if and only if there exist separating open sets \(U, V \subset M \) such that

1. \(A = (A \cap U) \cup (A \cap V) \),
2. \(A \cap U \neq \emptyset \),
3. \(A \cap V \neq \emptyset \),
4. \((A \cap U) \cap (A \cap V) = \emptyset \).

Equivalently, \(U' = A \cap U \) and \(V' = A \cap V \) are nonempty, relatively open sets such that \(U' = A \setminus V' \) and \(V' = A \setminus U' \); in turn, this holds if and only if \(U' \) is a nonempty open set in \(A \) which is not all of \(A \) and which is both open and closed. Since all the implications are if and only if, the proof is complete.

(b) \(\mathbb{R}^n \) is path-connected, since any points \(x, y \in \mathbb{R}^n \) are connected by the path \(c(t) = (1 - t)x + ty \), hence is is connected. By part (a), it follows that the only subsets if it which are open and closed are \(\emptyset \) and \(\mathbb{R}^n \).

Problem 5. Let \((M_1, d_1) \) and \((M_2, d_2) \) be metric spaces with compact sets \(K_1 \subset M_1 \) and \(K_2 \subset M_2 \).

Show that \(K_1 \times K_2 \) is a compact subset of the space \((M_1 \times M_2, d = d_1 + d_2) \). (The metric \(d \) on the product \(M_1 \times M_2 \) is defined by \(d((x_1, x_2), (y_1, y_2)) = d_1(x_1, y_1) + d_2(x_2, y_2) \).)

Solution. By Bolzano-Weierstrass, we may replace ‘compact’ by ‘sequentially compact’. Let \((x_n, y_n)\) be a sequence in \(K_1 \times K_2 \). We are done if we show that it has a subsequence which converges in \(K_1 \times K_2 \).

Since \(K_1 \) is sequentially compact, there is a subsequence \(x_{n(k)} \) which converges in \(K_1 \):

\[x_{n(k)} \xrightarrow{k \to \infty} x \in K_1. \]

Then consider the sequence \(y_{n(k)} \), \(k \in \mathbb{N} \), in \(K_2 \). Since \(K_2 \) is sequentially compact, this has a further subsequence \(y_{n(k(l))} \), \(l \in \mathbb{N} \) which converges in \(K_2 \):

\[y_{n(k(l))} \xrightarrow{l \to \infty} y \in K_1. \]

The subsequence \(x_{n(k(l))} \) of \(x_{n(k)} \) also converges to \(x \) (since a subsequence of a convergent sequence always converges to the same limit), thus

\[(x_{n(k(l))}, y_{n(k(l))}) \longrightarrow (x, y) \in K_1 \times K_2 \]

is a convergent subsequence of the original.